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The action of a rigid stamp moving at a constant speed, on the boundary of
an elastic half-space, is investigated, It is assumed that the frictional forces
between the stamp and the surface of the half -space are absent, The integral
equation obtained in [1] yields formulas for the pressure, for the case when the
area of contact between the stamp and the half-space has an elliptic form,

1, Expansion of the kernel of integral equation
into a power series, The author obtained in [1] an integral equation for
determining the pressure under a rigid stamp moving at a constant speed along the

z -axis., The equation written in the 2z, y, z -coordinate system attached to
the moving stamp has the form
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where ¢; and ¢, are the longitudinal and transverse velocities of the waves gener-
ated by the stamp moving at the speed c.
To solve the equationwe expand the kernel into a power series in

%x = (y — N)r 3%, (1.2

Using the last four relations of (1. 1), we obtain the following expression for the kernel
of (1. 1):

1
K(x—E,y—Tl)=—2mK*(x) (1.3)
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Expanding the expressions of the form (1 — %)™ in(1,3) into binomial series, we
obtain the following expression for the kemel of (1, 1):
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The series (1.4) converges uniformly to K (x — E, ¥y — M) for ¢<{¢3 where
€3 is the velocity of the Rayleigh surface wave, The latter velocity is given by the
equation

@ — e, )t = 16 (1 — e, 2) (1 — cPer™?) (1.5)

which is obtained by equating the denominator in (1. 3) to zero under the condition that
{(y —m)>r~? = 1., The relation (1, 5) is also known in seismology (see e. g. {2, 3].

Using the method of induction, we can obtain the following estimate for the co-
efficients A, of (1.4):

Aa<N(—f})“(-j:—2)“, N = const, ‘2‘(‘1"‘11?’7 <B<L

where it should be remembered that */y <y < 1.

2, Impressing a stamp of elliptic cross section
fnto an elastic ha!f—space. If

w(z,y) = 2 E b x'y' (2.1)

i==s0 j=0
(A + 1 = n, b;; = const)

then the solution of the integral equation
2.2
wiay)=§a e 2 4,0 dan (2.2

for an elliptic region of contact £ (with the semiaxes a and ) has the form
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k1
Q(x!y)zzzﬂsij(i-—-z—:—%:_)—h (2.3)

i=0 j=0

(k+1=n,a;;=const, R=) (z— &P + (y — n)?)

Assuming that the solution of (2, 2) is unique, we shall prove the validity of (2, 3},
arriving at the same time at the method of obtaining a relation connecting the co-
efficients a;; with byj.

We shall show that the integral J (Z, ¥) equal to the right hand side of (2. 2) is
ann-th degree polynomial, if ¢ (&, n) has the form (2.3), and we shalluse the
method given in [4, 5] to prove this,

Passing to the polar coordinates (see Fig. 1) = z + R cos ¢, 1= y -+ R sin ¢,
we obtain , from (2,2) and (2, 3),

k 1 oot on Ro(9)
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L () = a™® cos?p + b~2sin? ¢, M (9) = a~2x cos ¢ 4 b~? X
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Let us consider a point A within the ellipse, and a point 4" at its boundary.

Let R, (@) be the distance between the points A and A” . Since the coordinates
of A" satisfy the relations

$02/a2+y92/52= 1 (2.5)
zyp =2 + Rycos @
o=yt Rosin ¢

¥

A"z, 45)

the distance R, is given by the expression

3 2 = Ro(9) = (— M () + (2.6)
¥

Y M*(9) — NL(9))/L(9)

Here N >0 since A (z, ¥) lies with-

Fig. 1 in the elhpse.
since 0 < R<C Ry (9), L (9) >0,
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Performing now the change of variable:
cos® ={M + RL)/K 0o )
we can rewrite (2, 4) in the form

2% o)
J (@,9)= 2. Eau E Aq S § 7140 2.7

_0 J 0
Jij (@, 6) = (z+ Kcosqpcos® — L1 M cos )t X
(y + K sin ¢ cos 8 — L1 M sin @) L/ sin%g

where O (@) denotes the valne of 0 at R = 0. Taking into account the following
relation obtained from (2.4) and (2.7):

25 o(9) n —6(V)

§ao § ri@oenae=Say § 1i0p,000)d

N 0 0 0

we write the expression (2, 7) in the form

a(p)
J(z,y) = 2% ’20 a; 3 Aanqp { Ji(0,8(0) d0 = (2.8)
1= = o==0 0
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Integration with respect to 0 reduces (. 8) to

x,y)—ZEZaﬁZLC’C X (2.9)
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where r + s and j -+ p are even numbers and e is the eccentricity of the ellip-
tical region Q. The quantities Sa,m,n are given in terms of the complete elliptic
integrals, and the expression (2. 9) shows that J (z, Y) is indeed ann-th degree poly-
nomial,

Substituting (2. 9) into the right hand side of (2.2), we obtain a relation containing
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in its left and right hand sidesn-th degree polynomials dependent of x and y .
Equating the coefficients of like powers in 2 and y appearing in both sides of this
relation, we obtain a system of (n + 1) (n + 2) /2 linear algebraic equations
for determining the coefficients a;; in terms of b;; ., Solving this system we obt-
ain, in accordance with (2, 3), a solution of the integral equation (2, 2) for the case
(2.1), for the elliptical region €.

The force P and the moments M, M, are determined by formulas:

P=S§q(z, y)dzdy (2.10)

M, = SDSyQ(xa Y) dxdy: My == Squ (z, y)dzdy
Q

The solution (2. 3) becomes infinite at the boundary of the elliptical region of contact
. We can, however, obtain a solution of (2. 2) which will vanish at the boundary
of the region of contact Q. This solution has the form

k-11—1

@y =Y Y ay(t—Z— _g_:_)"” (2.1)

i=0 j=0

The proof of the validity of (2, 11) is similar to that given above. In this case the
relations connecting the coefficients a;; and b;; are obtained from

E—1i—1 -1l
Z Z bi]-xiy" = 2 2 Z ai; X (2. 12}
i=0 J':-.o i = =

Z Z CICPB (Li”%ii ,_2_) (1 — e2)r=stasnia

r==0 §==0

{rts--2)/2 i-pj—-20+2

Clrsarays (— 1)r-9/2-av1g20-1 Z Clijmagaa @2 PHayP
Q=0 p=0

o
2 AaS 20, 1-q¥14+(J-p+8-r)j2, (+p-s+r)/2
a=0

where k+ l=mnr, r+ s and j-+ p areeven numbers,
Let us consider the case in which the pressure at the boundary of the region  of
contact is without limit, Let

w (2, ¥) = boo + brox + boyy (2,13)
Then the polynomial (2, 9) assumes the following form:

o0
Z (.1, y) = 2nb 2 Aa (Sgg,, 0, 0”00 + Sgu,' 1, oalux + bga--gsw, 0, la()ly) (2' 14)
=0
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Equating the free term and the coefficients accompanying the unknowns = and y
in (2. 13) with the corresponding quantities appearing in (2, 14), we obtain the system

oo
. 2.
bio=2mb B} AySoy i By i=0,1 (2.15)
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Solving (2.15) for a,;; we obtain from (2. 3) the expression for the pressure under the
stamp in the form

g (2, y) = (20)™ (booBoo + broBroz + a*b~2bByy) (1 — 2%a2— yyB2)™"h (2, 16)
- -1
By =( 3 4uSm, 01)
=0
The force and the moments are obtained from (2, 10) and (2, 16) in the form
P = abgoBoy, My = l/:4”'31701301, My = /3a%b10Byo
Let us now consider the case in which the pressure at the boundary of the region of
contact has a limit, Let
w (z, y) = bgg + byoz® + beat? (2.17)
In this case, using (2, 12) we obtain the following system of equtions for determining

the coefficients a;; for the given semiaxes a4 and & of the elliptical region of
contact:

o0
1 1
boo == b [2 Aq (Sza, 0, 0%0 T 77 b8y o, 100+ V800, 4, 0“02)] (2.18)
0

1
byy = b {Z A, [— a8y 1 oo+ (sm, 00— 7 D08y, 1 1) ago +

o=

2
i

<

1
(b4a—452a, 11T 028y, s, 0) %02 ]}

oo

1
b(]ﬂ =nb {2 AG [— a—zsm’ 0, 1“00 + (Sza, 1,17 —Z— b‘la“lsza, 0. 2) 20 +

=0
(b4 —4S Lbz ']
TS, 0,2 g D" 280a,1,1) %02

_ S cos?@) ¢ gin® ¢ dg
BX (1 — e2sin2 @)P

i=012v B=3/2; ]=1r ﬁ=5/2




1182 V. A. Churilov

Having determined a;; we obtain from (2, 11) the following expression for the
pressure under the stamp:

7 (2, y) = (ag9 T agez® + apy*)(1 — 2%/ a® — y2/ bz)—‘/’ (2.19)

The load acting on the stamp is obtained, using the integral (2, 10), in the form

P = ?/gmab [agy + (aza® + aged?) / 5] (2.20)

Setting a5, and ay; in (2, 18) — (2.20) equal to zero, we obtain a solution of
the problem of impressing, into an elastic half-space, a moving parabolic stamp in
which the area of contact varies with the force P applied,

The first equation of (2, 18) yields the coefficient a,,, while the second the third
equation of (2, 18) are used to determine the semiaxes a and b of the elliptical re-
gion of contact, which are not known in this case,
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