ACTION OF AN ELLIPTIC STAMP MOVING AT A CONSTANT SPEED ON AN ELASTIC HALF-SPACE

PMM Vol. 42, No. 6, 1978, pp 1074-1079, V. A. CHURILOV
(Moscow)
(Received May 17, 1976)
The action of a rigid stamp moving at a constant speed, on the boundary of an elastic half-space, is investigated. It is assumed that the frictional forces between the stamp and the surface of the half-space are absent. The integral equation obtained in [1] yields formulas for the pressure, for the case when the area of contact between the stamp and the half-space has an elliptic form.

1. Expansion of the kernel of integral equation into a power series, The author obtained in [1] an integral equation for determining the pressure under a rigid stamp moving at a constant speed along the
x-axis. The equation written in the x, y, z-coordinate system attached to the moving stamp has the form

$$
\begin{align*}
& w(x, y)=\iint_{\Omega} K(x-\xi, y-\eta) q(\xi, \eta) d \xi d \eta \tag{1,1}\\
& K(x-\xi, y-\eta)=\frac{k_{2}\left(1+r_{1} r_{2}^{-1} \sqrt{S_{3}}\right) r_{1} r_{2}^{-1} \sqrt{S_{3}}}{2 \pi \mu\left[4 \gamma k_{2}^{2} r^{2} r_{2}^{-2}+\left(1-k_{2}^{2} r^{2} r_{2}^{-2}\right)\left(1+r_{1} r_{2}^{-1} \sqrt{S_{3}}\right)\right] r_{2}} \\
& r^{2}=(x-\xi)^{2}+(y-\eta)^{2}, \quad r_{\mathbf{1}}=\sqrt{k_{1}^{2}(x-\xi)^{2}+(y-\eta)^{2}} \\
& r_{2}=\sqrt{k_{2}^{2}(x-\xi)^{2}+(y-\eta)^{2}}, \quad S_{3}=k_{2}^{2} k_{1}^{-2} \\
& k_{1}^{-2}=1-c^{2} c_{1}^{-2}, \quad k_{2}^{-2}=1-c^{2} c_{2}^{-2}, \quad \gamma=(\lambda+\mu) /(\lambda+2 \mu)
\end{align*}
$$

where c_{1} and c_{2} are the longitudinal and transverse velocities of the waves generated by the stamp moving at the speed c.

To solve the equation we expand the kernel into a power series in

$$
\begin{equation*}
x=(y-\eta)^{2} r^{-2} c^{2} c_{2}{ }^{-2} \tag{1.2}
\end{equation*}
$$

Using the last four relations of (1.1), we obtain the following expression for the kernel of (1.1):

$$
\begin{align*}
& K(x-\xi, y-\eta)=\frac{1}{2 \pi \mu r} K^{*}(x) \tag{1,3}\\
& K(x)=\frac{\left[1-\gamma+\gamma(1-x)^{-1}+B\right](1-x)^{-1 / 2}}{\left[1+(1-x)^{-1}(4 \gamma-1-B x)\right]} \\
& B=[1-(1-\gamma) x]^{1 / 2}(1-x)^{-1 / 2}
\end{align*}
$$

Expanding the expressions of the form $(1-x)^{m}$ in (1.3) into binomial series, we obtain the following expression for the kemel of (1.1):

$$
\begin{align*}
& K(x-\xi, y-\eta)=\sum_{\alpha=0}^{\infty} A_{\alpha} \frac{(y-\eta)^{2 \alpha}}{r^{2 \alpha+1}} \tag{1,4}\\
& A_{0}=\frac{1}{4 \pi \mu \gamma}, \quad A_{1}=\frac{1}{8 \pi \mu}\left(\frac{1}{\gamma^{2}}-\frac{1}{\gamma}+\frac{3}{2}\right) \frac{c^{2}}{c_{2}^{3}} \\
& \alpha \geqslant 2, \quad A_{\alpha}=\frac{1}{8 \pi \mu \gamma}\left\{\left[2 \gamma \alpha-(1-\gamma)^{\alpha}-1\right] \frac{(2 \alpha-3)!!}{(2 \alpha)!!}+\right. \\
& \quad \frac{4 \pi \mu}{\left(c^{2} c_{2}^{-2}\right)^{\alpha-1}} A_{\alpha-1}-2 \pi \mu \sum_{i=0}^{\alpha-2} \sum_{\beta=0}^{i+1} \frac{A_{\alpha-i-2}}{\left(c^{2} c_{2}^{-2}\right)^{\alpha-i-2}}(1-\gamma)^{\beta} \times \\
& \left.\quad \frac{(2 \beta-3)!!}{(2 \beta)!!} \frac{(2 i-2 \beta+1)!!}{(2 i-2 \beta+2)!!}\right\}\left(\frac{c^{2}}{c_{2}^{2}}\right)^{\alpha} \\
& (\alpha=0,(-3)!!=(-1)!!=0!!=1)
\end{align*}
$$

The series (1.4) converges uniformly to $K(x-\xi, y-\eta)$ for $c<c_{3}$ where c_{3} is the velocity of the Rayleigh surface wave. The latter velocity is given by the equation

$$
\begin{equation*}
\left(2-c^{2} c_{2}^{-2}\right)^{4}=16\left(1-c^{2} c_{2}^{-2}\right)\left(1-c^{2} c_{1}^{-2}\right) \tag{1.5}
\end{equation*}
$$

which is obtained by equating the denominator in (1.3) to zero under the condition that $(y-\eta)^{2} r^{-2}=1$. The relation (1.5) is also known in seismology (see e. g. [2, 3].

Using the method of induction, we can obtain the following estimate for the coefficients A_{α} of (1.4):

$$
A_{\alpha}<N\left(\frac{B}{\gamma}\right)^{\alpha}\left(\frac{c^{2}}{c_{2}^{2}}\right)^{\alpha}, \quad N=\mathrm{const}, \quad \frac{1}{2(1-\gamma)}<B<\infty
$$

where it should be remembered that $1 / 2<\gamma<1$.
2. Impressing a stampof elifptic cross section into an elastichalf-space. If

$$
\begin{align*}
& w(x, y)=\sum_{i=0}^{k} \sum_{j=0}^{l} b_{i} x^{i} y^{i} \tag{2.1}\\
& \left(k+l=n, b_{i j}=\mathrm{const}\right)
\end{align*}
$$

then the solution of the integral equation

$$
\begin{equation*}
w(x, y)=\iint_{\Omega} q(\xi, \eta) \sum_{\alpha=0}^{\infty} A_{\alpha} \frac{(y-\eta)^{2 \alpha}}{R^{2 \alpha+1}} d \xi d \eta \tag{2,2}
\end{equation*}
$$

for an elliptic region of contact Ω (with the semiaxes a and b) has the form

$$
\begin{align*}
& q(x, y)=\sum_{i=0}^{\kappa} \sum_{j=0}^{l} a_{i j}\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{-1 / 2} \tag{2,3}\\
& \left(k+l=n, a_{i j}=\mathrm{const}, R=\sqrt{\left.(x-\xi)^{2}+(y-\eta)^{2}\right)}\right.
\end{align*}
$$

Assuming that the solution of (2.2) is unique, we shall prove the validity of (2.3), arriving at the same time at the method of obtaining a relation connecting the coefficients $a_{i j}$ with $b_{i j}$.

We shall show that the integral $J(x, y)$ equal to the right hand side of (2.2) is an n-th degree polynomial, if $q(\xi, \eta$) has the form (2.3), and we shall use the method given in $[4,5]$ to prove this.
Passing to the polar coordinates (see Fig. 1) $\xi=x+R \cos \varphi, \eta=y+R \sin \varphi$, we obtain , from (2.2) and (2.3),

$$
\begin{aligned}
& J(x, y)=\sum_{i=0}^{k} \sum_{j=0}^{l} a_{i j} \sum_{\alpha=0}^{\infty} A_{\alpha} \int_{0}^{2 \pi} d \varphi \int_{0}^{R_{0}(\varphi)}(x+R \cos \varphi)^{i} \times \\
& \quad(y+R \sin \varphi)^{j} \sin ^{2 \alpha} \varphi\left[N+\frac{M^{2}}{L}\right]^{-1 / 2}\left[1-\left(\frac{M+R L}{\sqrt{N L+M^{2}}}\right)^{8}\right]^{-1 / 2} d R \\
& L(\varphi)=a^{-2} \cos ^{2} \varphi+b^{-2} \sin ^{2} \varphi, \quad M(\varphi)=a^{-2} x \cos \varphi+b^{-2} \times \\
& \quad y \sin \varphi \\
& N=1-x^{2} / a^{2}-y^{2} / b^{2}
\end{aligned}
$$

Let us consider a point A within the ellipse, and a point $A^{\prime \prime}$ at its boundary. Let $R_{0}(\varphi)$ be the distance between the points A and $A^{\prime \prime}$. Since the coordinates of $A^{\prime \prime}$ satisfy the relations

Fig. 1

$$
\begin{align*}
& x_{0}^{2} / a^{2}+y_{0}^{2} / b^{2}=1 \tag{2.5}\\
& x_{0}=x+R_{0} \cos \varphi \\
& y_{0}=y+R_{0} \sin \varphi
\end{align*}
$$

the distance R_{0} is given by the expression

$$
\begin{align*}
& R_{0}(\varphi)=(-M(\varphi)+ \tag{2.6}\\
& \quad \sqrt{\left.M^{2}(\varphi)-N L(\varphi)\right)} / L(\varphi)
\end{align*}
$$

Here $N>0$ since $A(x, y)$ lies within the ellipse.

Since $0 \leqslant R \leqslant R_{0}(\varphi), L(\varphi)>0$,
we have

$$
-1<\frac{M}{K} \leqslant \frac{M+R L}{K} \leqslant \frac{M+R_{0} L}{K}=1 \quad\left(K=\sqrt{M^{2}+N L}\right)
$$

Performing now the change of variable:

$$
\cos \theta=(M+R L) / K \quad(0 \leqslant \theta \leqslant \pi)
$$

we can rewrite (2.4) in the form

$$
\begin{gather*}
J(x, y)=\sum_{i=0}^{k} \sum_{j=0}^{l} a_{i j} \sum_{\alpha=0}^{\infty} A_{\alpha} \int_{0}^{2 \pi} d \varphi \int_{0}^{\theta(\varphi)} J_{i j} d \theta \tag{2.7}\\
J_{i j}(\varphi, \theta)=\left(x+K \cos \varphi \cos \theta-L^{-1} M \cos \varphi\right)^{i} \times \\
\left(y+K \sin \varphi \cos \theta-L^{-1} M \sin \varphi\right)^{j} L^{-1 / 2} \sin ^{2 \alpha} \varphi
\end{gather*}
$$

where $\theta(\varphi)$ denotes the value of θ at $R=0$. Taking into account the following relation obtained from (2.4) and (2.7):

$$
\int_{\pi}^{2 \pi} d \varphi \int_{0}^{\theta(\varphi)} J_{i j}(\varphi, \theta(\varphi)) d \theta=\int_{0}^{\pi} d \psi \int_{0}^{\pi-\theta(\psi)} J_{i j}(\psi, \theta(\psi)) d \psi
$$

we write the expression (2.7) in the form

$$
\begin{align*}
& J(x, y)=\sum_{i=0}^{k} \sum_{j=0}^{l} a_{i j} \sum_{\alpha=0}^{\infty} A_{\alpha} \int_{0}^{\pi} d \varphi \int_{0}^{\theta(\varphi)} J_{i j}(\varphi, \theta(\varphi)) d \theta= \tag{2.8}\\
& \sum_{i=0}^{k} \sum_{j=0}^{l} a_{i j} \sum_{\alpha=0}^{\infty} A_{\alpha} \int_{0}^{\pi} d \varphi \int_{0}^{\pi} J_{i j}(\varphi, \theta) d \theta
\end{align*}
$$

Integration with respect to θ reduces (2.8) to

$$
\begin{align*}
& J(x, y)=2 \sum_{i=0}^{k} \sum_{j=0}^{l} a_{i j} \sum_{r=0}^{i} \sum_{s=0}^{j} C_{i}^{r} C_{j}^{3} \times \tag{2.9}\\
& B\left(\frac{r+s+1}{2}, \frac{1}{2}\right)\left(1-e^{2}\right)^{(r-s+2 j+1) / 2} \times \\
& \sum_{q=0}^{(r+s) / 2} C_{(r+s) / 2}^{q}(-1)^{(r-s) / 2-q} a^{2 q+1} \sum_{p=0}^{i+j-2 q} C_{i+j-2}^{p} \times \\
& x^{i+j-2 q-p} y^{p} \sum_{\alpha=0}^{\infty} A_{\alpha \alpha} S_{2 \alpha, i-q+(j-p+8-r) / 2,(j+p-s+r) / 2} \\
& S_{2 \alpha, m, n}=\int_{0}^{\pi / 2} \frac{\cos ^{2 m+2 \alpha} \varphi \sin ^{2 n} \varphi d \varphi}{\left(1-e^{z} \sin ^{2} \varphi\right)^{m+n+1 / 2}}
\end{align*}
$$

where $r+s$ and $j+p$ are even numbers and e is the eccentricity of the elliptical region Ω. The quantities $S_{2 \alpha, m, n}$ are given in terms of the complete elliptic integrals, and the expression (2.9) shows that $J(x, y)$ is indeed an n-th degree polynomial.

Substituting (2.9) into the right hand side of (2.2), we obtain a relation containing
in its left and right hand sides n-th degree polynomials dependent of x and y. Equating the coefficients of like powers in x and y appearing in both sides of this relation, we obtain a system of $(n+1)(n+2) / 2$ linear algebraic equations for determining the coefficients $a_{i j}$ in terms of $b_{i j}$. Solving this system we obtain, in accordance with (2.3), a solution of the integral equation (2.2) for the case (2.1), for the elliptical region Ω.

The force P and the moments M_{x}, M_{y} are determined by formulas:

$$
\begin{align*}
& P=\int_{\Omega} \int_{\Omega} q(x, y) d x d y \tag{2.10}\\
& M_{x}=\iint_{\Omega} y q(x, y) d x d y, \quad M_{\nu}=\iint_{\Omega} x q(x, y) d x d y
\end{align*}
$$

The solution (2.3) becomes infinite at the boundary of the elliptical region of contact Ω. We can, however, obtain a solution of (2.2) which will vanish at the boundary of the region of contact Ω. This solution has the form

$$
\begin{equation*}
q(x, y)=\sum_{i=0}^{k-1} \sum_{j=0}^{l-1} a_{i j}\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{-1 / 2} \tag{2.11}
\end{equation*}
$$

The proof of the validity of (2.11) is similar to that given above. In this case the relations connecting the coefficients $a_{i j}$ and $b_{i j}$ are obtained from

$$
\begin{aligned}
& \sum_{i=0}^{k-1} \sum_{j=0}^{l-1} b_{i j} x^{i} y^{j}=2 \sum_{i=0}^{k-1} \sum_{j=0}^{l-1} a_{i j} \times \\
& \quad \sum_{r=0}^{i} \sum_{s=0}^{j} C_{i}^{r} C_{j}^{s} B\left(\frac{r+s+1}{2}, \frac{3}{2}\right)\left(1-e^{2}\right)^{(r-s+2 j+1) / 2} \times \\
& \quad \sum_{q=0}^{(r+s+2) / 2} C_{(r+s+2) / 2}^{q}(-1)^{(r-s) / 2-q+1} a^{2 q-1} \sum_{p=0}^{i+j-2 q+2} C_{i+j-2 q+2}^{p} x^{i+j-2 q-p+2} y^{p} \times \\
& \quad \sum_{\alpha=0}^{\infty} A_{\alpha} S_{2 \alpha, i-q+1+(j-p+s-r) / 2,(0+p-s+r) / 2}
\end{aligned}
$$

where $k+l=n, r+s$ and $j+p$ are even numbers.
Let us consider the case in which the pressure at the boundary of the region of contact is without limit. Let

$$
\begin{equation*}
w(x, y)=b_{00}+b_{10} x+b_{01} y \tag{2,13}
\end{equation*}
$$

Then the polynomial (2.9) assumes the following form:

$$
\begin{equation*}
Z(x, y)=2 \pi b \sum_{\alpha=0}^{\infty} A_{\alpha}\left(S_{2 \alpha, 0,0^{a_{00}}}+S_{\left.2 \alpha, 1,0^{a_{10}} x+b^{2} a^{-2} S_{2 \alpha, 0,1} a_{01} y\right)}\right. \tag{2.14}
\end{equation*}
$$

Equating the free term and the coefficients accompanying the unknowns x and y in (2.13) with the corresponding quantities appearing in (2.14), we obtain the system

$$
\begin{align*}
& b_{i 0}=2 \pi b \sum_{\alpha=0}^{\infty} A_{\alpha} S_{2 \alpha, i, 0} a_{i 0}, \quad i=0,1 \tag{2,15}\\
& b_{01}=2 \pi b^{3} a^{-2} \sum_{\alpha=0}^{\infty} A_{\alpha} S_{2 \alpha, 0,1} a_{01} \\
& S_{2 \alpha, i, j}=\int_{0}^{\pi / 2} \frac{\cos ^{2(\alpha+i)} \varphi \sin ^{2 j} \varphi d \varphi}{\sqrt{1-e^{2} \sin ^{2} \varphi}}
\end{align*}
$$

Solving (2.15) for $a_{i j}$, we obtain from (2.3) the expression for the pressure under the stamp in the form

$$
\begin{align*}
& q(x, y)=(2 \pi b)^{-1}\left(b_{00} B_{00}+b_{10} B_{10} x+a^{2} b^{-2} b_{01} B_{01} y\right)\left(1-x^{2} / a^{2}-y^{2} / b^{2}\right)^{-1 / 2} \tag{2.16}\\
& B_{i j}=\left(\sum_{\alpha=0}^{\infty} A_{\alpha} S_{2 \alpha, i, j}\right)^{-1}
\end{align*}
$$

The force and the moments are obtained from (2.10) and (2.16) in the form

$$
P=a b_{00} B_{00}, \quad M_{x}=1 /{ }_{3} a^{3} b_{01} R_{01}, \quad M_{y}=1 / a^{a^{3}} b_{10} B_{10}
$$

Let us now consider the case in which the pressure at the boundary of the region of contact has a limit. Let

$$
\begin{equation*}
w(x, y)=b_{00}+b_{20} x^{2}+b_{02} y^{2} \tag{2.17}
\end{equation*}
$$

In this case, using (2.12) we obtain the following system of equtions for determining the coefficients $a_{i j}$ for the given semiaxes a and b of the elliptical region of contact:

$$
\begin{align*}
& b_{00}=\pi b\left[\sum_{\alpha=0}^{\infty} A_{\alpha}\left(S_{2 \alpha, 0,0} a_{00}+\frac{1}{4} b^{2} S_{2 \alpha, 0,1} a_{20}+\frac{1}{4} b^{2} S_{2 \alpha, 1,0} a_{02}\right)\right] \tag{2.18}\\
& b_{20}=\pi b\left\{\sum _ { \alpha = 0 } ^ { \infty } A _ { \alpha } \left[-a^{-2} S_{2 \alpha, 1,0} a_{00}+\left(S_{2 a, 2,0}-\frac{1}{4} b^{2} a^{-2} S_{2 \alpha, 1,1}\right) a_{20}+\right.\right. \\
& \left.\left.\quad\left(b^{4} a^{-4} S_{2 \alpha, 1,1}+\frac{1}{4} b^{2} a^{-2} S_{2 \alpha, 2,0}\right) a_{02}\right]\right\} \\
& b_{02}=\pi b\left\{\sum _ { \alpha = 0 } ^ { \infty } A _ { \alpha } \left[-a^{-2} S_{2 \alpha, 0,1} a_{00}+\left(S_{2 \alpha, 1,1}-\frac{1}{4} b^{2} a^{-2} S_{2 \alpha, 0,2}\right) a_{20}+\right.\right. \\
& \left.\left.\quad\left(b^{4} a^{-4} S_{2 \alpha, 0,2}-\frac{1}{4} b^{2} a^{-2} S_{2 \alpha, 1,1}\right) a_{02}\right]\right\} \\
& S_{2 \alpha, i, j}=\int_{0}^{\pi / 2} \frac{\cos ^{2(\alpha+i)} \varphi \sin ^{2 j} \varphi d \varphi}{\left(1-e^{2} \sin ^{2} \varphi\right)^{\beta}} \\
& j=0,2, \quad \beta=3 / 2 ; \quad j=1, \quad \beta=5 / 2
\end{align*}
$$

Having determined $a_{i j}$ we obtain from (2.11) the following expression for the pressure under the stamp:

$$
\begin{equation*}
q(x, y)=\left(a_{00}+a_{20} x^{2}+a_{02} y^{2}\right)\left(1-x^{2} / a^{2}-y^{2} / b^{2}\right)^{-1 / 2} \tag{2.19}
\end{equation*}
$$

The load acting on the stamp is obtained, using the integral (2.10), in the form

$$
\begin{equation*}
P=2 / 3 \pi a b\left[a_{00}+\left(a_{20} a^{2}+a_{02} b^{2}\right) / 5\right] \tag{2.20}
\end{equation*}
$$

Setting a_{20} and a_{02} in (2.18) - (2.20) equal to zero, we obtain a solution of the problem of impressing, into an elastic half-space, a moving parabolic stamp in which the area of contact varies with the force P applied. The first equation of (2.18) yields the coefficient a_{00}, while the second the third equation of (2.18) are used to determine the semiaxes a and b of the elliptical region of contact, which are not known in this case.

REFERENCES

1. Churilov, $\%$. A. On the effect of a normal load moving at a constant velocity along the boundary of an elastic half-space. PMM Vol, 41, No. 1, 1977.
2. Golitsy n, B. B. Lectures on Seismometry. S.-Peterburg, 1912.
3. Savarenskii, E. F. and Kirnos, D. P. Elements of Seismology and Seismometry. Leningrad-Moscow, Gostekhizdat, 1949.
4. Shtaerman, I. Ia. Contact Problem of the Theory of Elasticity. Leningrad -Moscow, Gostekhizdat, 1949.
5. Vorovich, I. I., Aleksandrov, V. M. and Babeshko, V. A. Nonclassical Mixed Problems of the Theory of Elasticity. Moscow, "Nauka", 1974.
